-
1 инженер-строитель
1) General subject: building engineer, civil engineer (общественных сооружений), civil engineer2) Engineering: designing engineer3) Construction: building designer, constructing engineer, resident engineer, structural engineer4) Economy: construction engineer, erecting engineer5) Makarov: architectural engineer -
2 bygningskonstruktør
subst. constructing engineer -
3 Vignoles, Charles Blacker
[br]b. 31 May 1793 Woodbrook, Co. Wexford, Irelandd. 17 November 1875 Hythe, Hampshire, England[br]English surveyor and civil engineer, pioneer of railways.[br]Vignoles, who was of Huguenot descent, was orphaned in infancy and brought up in the family of his grandfather, Dr Charles Hutton FRS, Professor of Mathematics at the Royal Military Academy, Woolwich. After service in the Army he travelled to America, arriving in South Carolina in 1817. He was appointed Assistant to the state's Civil Engineer and surveyed much of South Carolina and subsequently Florida. After his return to England in 1823 he established himself as a civil engineer in London, and obtained work from the brothers George and John Rennie.In 1825 the promoters of the Liverpool \& Manchester Railway (L \& MR) lost their application for an Act of Parliament, discharged their engineer George Stephenson and appointed the Rennie brothers in his place. They in turn employed Vignoles to resurvey the railway, taking a route that would minimize objections. With Vignoles's route, the company obtained its Act in 1826 and appointed Vignoles to supervise the start of construction. After Stephenson was reappointed Chief Engineer, however, he and Vignoles proved incompatible, with the result that Vignoles left the L \& MR early in 1827.Nevertheless, Vignoles did not sever all connection with the L \& MR. He supported John Braithwaite and John Ericsson in the construction of the locomotive Novelty and was present when it competed in the Rainhill Trials in 1829. He attended the opening of the L \& MR in 1830 and was appointed Engineer to two railways which connected with it, the St Helens \& Runcorn Gap and the Wigan Branch (later extended to Preston as the North Union); he supervised the construction of these.After the death of the Engineer to the Dublin \& Kingstown Railway, Vignoles supervised construction: the railway, the first in Ireland, was opened in 1834. He was subsequently employed in surveying and constructing many railways in the British Isles and on the European continent; these included the Eastern Counties, the Midland Counties, the Sheffield, Ashton-under-Lyme \& Manchester (which proved for him a financial disaster from which he took many years to recover), and the Waterford \& Limerick. He probably discussed rail of flat-bottom section with R.L. Stevens during the winter of 1830–1 and brought it into use in the UK for the first time in 1836 on the London \& Croydon Railway: subsequently rail of this section became known as "Vignoles rail". He considered that a broader gauge than 4 ft 8½ in. (1.44 m) was desirable for railways, although most of those he built were to this gauge so that they might connect with others. He supported the atmospheric system of propulsion during the 1840s and was instrumental in its early installation on the Dublin \& Kingstown Railway's Dalkey extension. Between 1847 and 1853 he designed and built the noted multi-span suspension bridge at Kiev, Russia, over the River Dnieper, which is more than half a mile (800 m) wide at that point.Between 1857 and 1863 he surveyed and then supervised the construction of the 155- mile (250 km) Tudela \& Bilbao Railway, which crosses the Cantabrian Pyrenees at an altitude of 2,163 ft (659 m) above sea level. Vignoles outlived his most famous contemporaries to become the grand old man of his profession.[br]Principal Honours and DistinctionsFellow of the Royal Astronomical Society 1829. FRS 1855. President, Institution of Civil Engineers 1869–70.Bibliography1830, jointly with John Ericsson, British patent no. 5,995 (a device to increase the capability of steam locomotives on grades, in which rollers gripped a third rail).1823, Observations upon the Floridas, New York: Bliss \& White.1870, Address on His Election as President of the Institution of Civil Engineers.Further ReadingK.H.Vignoles, 1982, Charles Blacker Vignoles: Romantic Engineer, Cambridge: Cambridge University Press (good modern biography by his great-grandson).See also: Samuda, Joseph d'AguilarPJGRBiographical history of technology > Vignoles, Charles Blacker
-
4 Brindley, James
SUBJECT AREA: Canals[br]b. 1716 Tunstead, Derbyshire, Englandd. 27 September 1772 Turnhurst, Staffordshire, England[br]English canal engineer.[br]Born in a remote area and with no material advantages, Brindley followed casual rural labouring occupations until 1733, when he became apprenticed to Abraham Bennett of Macclesfield, a wheelwright and millwright. Though lacking basic education in reading and writing, he demonstrated his ability, partly through his photographic memory, to solve practical problems. This established his reputation, and after Bennett's death in 1742 he set up his own business at Leek as a millwright. His skill led to an invitation to solve the problem of mine drainage at Wet Earth Colliery, Clifton, near Manchester. He tunnelled 600 ft (183 m) through rock to provide a leat for driving a water-powered pump.Following work done on a pump on Earl Gower's estate at Trentham, Brindley's name was suggested as the engineer for the proposed canal for which the Duke of Bridge water (Francis Egerton) had obtained an Act in 1759. The Earl and the Duke were brothers-in-law, and the agents for the two estates were, in turn, the Gilbert brothers. The canal, later known as the Bridgewater Canal, was to be constructed to carry coal from the Duke's mines at Worsley into Manchester. Brindley advised on the details of its construction and recommended that it be carried across the river Irwell at Barton by means of an aqueduct. His proposals were accepted, and under his supervision the canal was constructed on a single level and opened in 1761. Brindley had also surveyed for Earl Gower a canal from the Potteries to Liverpool to carry pottery for export, and the signal success of the Bridgewater Canal ensured that the Trent and Mersey Canal would also be built. These undertakings were the start of Brindley's career as a canal engineer, and it was largely from his concepts that the canal system of the Midlands developed, following the natural contours rather than making cuttings and constructing large embankments. His canals are thus winding navigations unlike the later straight waterways, which were much easier to traverse. He also adopted the 7 ft (2.13 m) wide lock as a ruling dimension for all engineering features. For cheapness, he formed his canal tunnels without a towpath, which led to the notorious practice of legging the boats through the tunnels.Brindley surveyed a large number of projects and such was his reputation that virtually every proposal was submitted to him for his opinion. Included among these projects were the Staffordshire and Worcestershire, the Rochdale, the Birmingham network, the Droitwich, the Coventry and the Oxford canals. Although he was nominally in charge of each contract, much of the work was carried out by his assistants while he rushed from one undertaking to another to ensure that his orders were being carried out. He was nearly 50 when he married Anne Henshall, whose brother was also a canal engineer. His fees and salaries had made him very wealthy. He died in 1772 from a chill sustained when carrying out a survey of the Caldon Canal.[br]Further ReadingA.G.Banks and R.B.Schofield, 1968, Brindley at Wet Earth Colliery: An Engineering Study, Newton Abbot: David \& Charles.S.E.Buckley, 1948, James Brindley, London: Harrap.JHB -
5 Bouch, Sir Thomas
SUBJECT AREA: Civil engineering[br]b. 22 February 1822 Thursby, Cumberland, Englandd. 1880 Moffat[br]English designer of the ill-fated Tay railway bridge.[br]The third son of a merchant sea captain, he was at first educated in the village school. At the age of 17 he was working under a Mr Larmer, a civil engineer, constructing the Lancaster and Carlisle railway. He later moved to be a resident engineer on the Stockton \& Darlington Railway, and from 1849 was Engineer and Manager of the Edinburgh \& Northern Railway. In this last position he became aware of the great inconvenience caused to traffic by the broad estuaries of the Tay and the Forth on the eastern side of Scotland. The railway later became the Edinburgh, Perth \& Dundee, and was then absorbed into the North British in 1854 when Bouch produced his first plans for a bridge across the Tay at an estimated cost of £200,000. A bill was passed for the building of the bridge in 1870. Prior to this, Bouch had built many bridges up to the Redheugh Viaduct, at Newcastle upon Tyne, which had two spans of 240 ft (73 m) and two of 260 ft (79 m). He had also set up in business on his own. He is said to have designed nearly 300 miles (480 km) of railway in the north, as well as a "floating railway" of steam ferries to carry trains across the Forth and the Tay. The Tay bridge, however, was his favourite project; he had hawked it for some twenty years before getting the go-ahead, and the foundation stone of the bridge was laid on 22 July 1871. The total length of the bridge was nearly two miles (3.2 km), while the shore-to-shore distance over the river was just over one mile (1.6 km). It consisted of eighty-five spans, thirteen of which, i.e. "the high girders", were some 245 ft (75 m) long and 100 ft (30 m) above water level to allow for shipping access to Perth, and was a structure of lattice girders on brick and masonry piers topped with ironwork. The first crossing of the bridge was made on 26 September 1877, and the official opening was on 31 May 1878. On Sunday 28 December 1879, at about 7.20 pm, in a wind of probably 90 mph (145 km/h), the thirteen "high girders" were blown into the river below, drowning the seventy-five passengers and crew aboard the 5.20 train from Burntisland. A Court of Enquiry was held and revealed design faults in that the effect of wind pressure had not been adequately taken into account, faults in manufacture in the plugging of flaws in the castings, and inadequate inspection and maintenance; all of these faults were attributed to Bouch, who had been knighted for the building of the bridge. He died at his house in Moffat four months after the enquiry.[br]Principal Honours and DistinctionsKnighted. Cross of St George.Further ReadingJohn Prebble, 1956, The High Girders.IMcN -
6 Rastrick, John Urpeth
[br]b. 26 January 1780 Morpeth, Englandd. 1 November 1856 Chertsey, England[br]English engineer whose career spanned the formative years of steam railways, from constructing some of the earliest locomotives to building great trunk lines.[br]John Urpeth Rastrick, son of an engineer, was initially articled to his father and then moved to Ketley Ironworks, Shropshire, c. 1801. In 1808 he entered into a partnership with John Hazledine at Bridgnorth, Shropshire: Hazledine and Rastrick built many steam engines to the designs of Richard Trevithick, including the demonstration locomotive Catch-Me-Who-Can. The firm also built iron bridges, notably the bridge over the River Wye at Chepstow in 1815–16.Between 1822 and 1826 the Stratford \& Moreton Railway was built under Rastrick's direction. Malleable iron rails were laid, in one of the first instances of their use. They were supplied by James Foster of Stourbridge, with whom Rastrick went into partnership after the death of Hazledine. In 1825 Rastrick was one of a team of engineers sent by the committee of the proposed Liverpool \& Manchester Railway (L \& MR) to carry out trials of locomotives built by George Stephenson on the Killingworth Waggonway. Early in 1829 the directors of the L \& MR, which was by then under construction, sent Rastrick and James Walker to inspect railways in North East England and report on the relative merits of steam locomotives and fixed engines with cable haulage. They reported, rather hesitantly, in favour of the latter, particularly the reciprocal system of Benjamin Thompson. In consequence the Rainhill Trials, at which Rastrick was one of the judges, were held that October. In 1829 Rastrick constructed the Shutt End colliery railway in Worcestershire, for which Foster and Rastrick built the locomotive Agenoria; this survives in the National Railway Museum. Three similar locomotives were built to the order of Horatio Allen for export to the USA.From then until he retired in 1847 Rastrick found ample employment surveying railways, appearing as a witness before Parliamentary committees, and supervising construction. Principally, he surveyed the southern part of the Grand Junction Railway, which was built for the most part by Joseph Locke, and the line from Manchester to Crewe which was eventually built as the Manchester \& Birmingham Railway. The London \& Brighton Railway (Croydon to Brighton) was his great achievement: built under Rastrick's supervision between 1836 and 1840, it included three long tunnels and the magnificent Ouse Viaduct. In 1845 he was Engineer to the Gravesend \& Rochester Railway, the track of which was laid through the Thames \& Medway Canal's Strood Tunnel, partly on the towpath and partly on a continuous staging over the water.[br]Principal Honours and DistinctionsFRS 1837.Bibliography1829, with Walker, Report…on the Comparative Merits of Locomotive and Fixed Engines, Liverpool.Further ReadingC.F.Dendy Marshall, 1953, A History of Railway Locomotives Down to the End of the Year 1831, The Locomotive Publishing Co.R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.C.Hadfield and J.Norris, 1962, Waterways to Stratford, Newton Abbot: David \& Charles (covers Stratford and Moreton Railway).See also: Stephenson, RobertPJGR -
7 Smeaton, John
SUBJECT AREA: Civil engineering, Mechanical, pneumatic and hydraulic engineering, Steam and internal combustion engines[br]b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, Englandd. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England[br]English mechanical and civil engineer.[br]As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.[br]Principal Honours and DistinctionsFRS 1753.Bibliography1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.Further ReadingS.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).LRD -
8 Twiss, William
[br]b. 1745d. 14 March 1827 Hardon Grange, Bingley, Yorkshire, England.[br]English army officer and military engineer.[br]William Twiss entered the Ordnance Department at the age of 15, and in 1762, aged 17, he was appointed Overseer of Works at Gibraltar. At the end of the Seven Years War, in 1763, he was commissioned Ensign in the Engineers, and further promotion followed while he still remained in Gibraltar. In 1771, as a Lieutenant, he returned to England to be employed on Port-smouth's dockyard fortifications. In 1776 he was posted to Canada, where he was soon appointed Controller of Works for the building of a British fleet for Lake Champlain. He was involved in military operations in the American War of Independence and in 1777 was present at the capture of Fort Ticonderoga (New York State). He was taken prisoner shortly afterwards, but was soon exchanged, and a year later he was promoted Captain.In 1779 he was given the task of constructing a short canal at Coteau du Lac, Quebec, to bypass rough water at this point in the St Lawrence River between Montreal and Pointe Maligne. This was probably the first locked canal in North America. In 1781, following his appointment as Chief Engineer for all military works in Canada, he supervised further navigational improvements on the St Lawrence with canals at Les Cèdres and the Cascades. In parallel with these projects, he was responsible for an amazing variety of works in Canada, including hospitals, windmills, store-houses, barracks, fortifications, roads, bridges, prisons, ironworks and dams. He was also responsible for a temporary citadel in Quebec.In 1783 he returned to England, and from 1794–1810 he served as Lieutenant- Governor of the Royal Military Academy at Woolwich, although in 1799 he was sent to Holland as Commanding Engineer to the Duke of York. In 1802 he was promoted Colonel and was in Ireland reporting on the defences there. He became Colonel Commandant, Royal Engineers, in 1809, and retired two years later. In retirement he was promoted Lieu tenant-General in 1812 and General in 1825.[br]Further ReadingW.Porter, 1889–1915, History of the Corps of Royal Engineers, London: Longmans.JHB -
9 Fairbairn, Sir Peter
SUBJECT AREA: Textiles[br]b. September 1799 Kelso, Roxburghshire, Scotlandd. 4 January 1861 Leeds, Yorkshire, England[br]British inventor of the revolving tube between drafting rollers to give false twist.[br]Born of Scottish parents, Fairbairn was apprenticed at the age of 14 to John Casson, a mill-wright and engineer at the Percy Main Colliery, Newcastle upon Tyne, and remained there until 1821 when he went to work for his brother William in Manchester. After going to various other places, including Messrs Rennie in London and on the European continent, he eventually moved in 1829 to Leeds where Marshall helped him set up the Wellington Foundry and so laid the foundations for the colossal establishment which was to employ over one thousand workers. To begin with he devoted his attention to improving wool-weaving machinery, substituting iron for wood in the construction of the textile machines. He also worked on machinery for flax, incorporating many of Philippe de Girard's ideas. He assisted Henry Houldsworth in the application of the differential to roving frames, and it was to these machines that he added his own inventions. The longer fibres of wool and flax need to have some form of support and control between the rollers when they are being drawn out, and inserting a little twist helps. However, if the roving is too tightly twisted before passing through the first pair of rollers, it cannot be drawn out, while if there is insufficient twist, the fibres do not receive enough support in the drafting zone. One solution is to twist the fibres together while they are actually in the drafting zone between the rollers. In 1834, Fairbairn patented an arrangement consisting of a revolving tube placed between the drawing rollers. The tube inserted a "middle" or "false" twist in the material. As stated in the specification, it was "a well-known contrivance… for twisting and untwisting any roving passing through it". It had been used earlier in 1822 by J. Goulding of the USA and a similar idea had been developed by C.Danforth in America and patented in Britain in 1825 by J.C. Dyer. Fairbairn's machine, however, was said to make a very superior article. He was also involved with waste-silk spinning and rope-yarn machinery.Fairbairn later began constructing machine tools, and at the beginning of the Crimean War was asked by the Government to make special tools for the manufacture of armaments. He supplied some of these, such as cannon rifling machines, to the arsenals at Woolwich and Enfield. He then made a considerable number of tools for the manufacture of the Armstrong gun. He was involved in the life of his adopted city and was elected to Leeds town council in 1832 for ten years. He was elected an alderman in 1854 and was Mayor of Leeds from 1857 to 1859, when he was knighted by Queen Victoria at the opening of the new town hall. He was twice married, first to Margaret Kennedy and then to Rachel Anne Brindling.[br]Principal Honours and DistinctionsKnighted 1858.Bibliography1834, British patent no. 6,741 (revolving tube between drafting rollers to give false twist).Further ReadingDictionary of National Biography.Obituary, 1861, Engineer 11.W.English, 1969, The Textile Industry, London (provides a brief account of Fairbairn's revolving tube).C.Singer (ed.), 1958, A History of Technology, Vols IV and V, Oxford: Clarendon Press (provides details of Fairbairn's silk-dressing machine and a picture of a large planing machine built by him).RLH -
10 создавать
1. build onсоздавать; основыват; основыватся — build on
2. invent3. spring4. bring into beingвводить в действие; создавать — bring into being
5. call into being6. generate7. engender8. establish9. constructed10. constructing11. engineer12. engineered13. engineering14. give riseампер-витки катушки создают магнитный поток … — the ampere-turns of the coil give rise to a magnetic flux …
15. make up16. produce17. create; produce; build up; prepare18. construct19. frameСинонимический ряд:1. основывай (глаг.) образовывай; организовывай; основывай; учреждай; формируй2. созидай (глаг.) созидай; строй; твориАнтонимический ряд:ломай; разрушай; рушь; уничтожай -
11 Brandt, Alfred
SUBJECT AREA: Mining and extraction technology[br]b. 3 September 1846 Hamburg, Germanyd. 29 November 1899 Brig, Switzerland[br]German mechanical engineer, developer of a hydraulic rock drill.[br]The son of a Hamburg merchant, he studied mechanical engineering at the Polytechnikum in Zurich and was engaged in constructing a railway line in Hungary and Austria before he returned to Switzerland. At Airolo, where the Gotthard tunnel was to commence, he designed a hydraulic rock drill; the pneumatic ones, similar to the Ingersoll type, did not satisfy him. His drill consisted of two parts instead of three: the hydraulic motor and the installation for drilling. At the Sulzer company of Winterthur his first design, a percussion drill, in 1876, was developed into a rotary drill which worked with greatest success in the construction of various railway tunnels and also helped to reduce costs in the mining industry.His Hamburg-based firm Brandt \& Brandau consequently was soon engaged in many tunnelling and mining projects throughout Germany, as well as abroad. During the years 1883 and 1895 Brandt spent time in exploration in Spain and reopening the lead-mines in Posada. His most ambitious task was to co-operate in drafting the Simplon tunnel, the construction of which relied greatly on his knowledge and expertise. The works began several years behind schedule, in 1898, and consequently he was unable to see its completion.[br]Bibliography1877, "Beschreibung und Abbildung der Brandtschen Bohrmaschine", Eisenbahn 7 (13).Further ReadingC.Matschoss, 1925, Manner der Technik, Berlin.G.E.Lucas, 1926, Der Tunnel. Anlage und Bau, Vol. 2, Berlin, pp. 49–55 (deals with his achievements in the construction of tunnels).WK -
12 Leclanché, Georges
SUBJECT AREA: Electricity[br]b. 1839 Paris, Franced. 14 September 1882 Paris, France[br]French chemist and inventor of the primary cell named after him, from which the electrochemical principles of the modern dry cell have been developed.[br]Leclanché was sent to England for his early education. Returning to France, he entered the Central School of Arts and Manufacture, from which he graduated as a chemical engineer in 1860. He spent some years with a railway company in setting up an electrical timing system, and this work led him to electrochemical research. Driven by political pressure into exile, he set up a small laboratory in Brussels to continue the studies of the behaviour of voltaic cells he had started in France. Many workers directed their efforts to constructing a cell with a single electrolyte and a solid insoluble depo-larizer, but it was Leclanché who produced, in 1866, the prototype of a battery that was rugged, cheap and contained no highly corro-sive liquid. With electrodes of carbon and zinc and a solution of ammonium chloride, polarization was prevented by surrounding the positive electrode with manganese dioxide. The Leclanché cell was adopted by the Belgian Government Telegraph Service in 1868 and rapidly came into general use wherever an intermittent current was needed; for example, in telegraph and later in telephone circuits. Carl Gassner in 1888 pioneered successful dry cells based on the Leclanché system, with the zinc anode serving as the container, and c. 1890 commercial production of such cells began.[br]Bibliography10 October 1866, British patent no. 2,623 (Leclanché cell).1868, "Pile au peroxyde de manganèse à seul liquide", Les Mondes 16:532–3 (describes the Leclanché cell).Further ReadingM.Barak, 1966, "Georges Leclanché (1939–1882)", IEE Electronics and Power 12:184– 91 (a detailed account).N.C.Cahoon and G.W.Heise (eds), 1976, The Primary Battery, Vol. II, New York, pp. 1–147 (describes subsequent developments), GW -
13 Martin, Sir James
SUBJECT AREA: Aerospace[br]b. 1893 Co. Down, Northern Irelandd. 5 January 1981 England[br]Irish military aircraft engineer, inventor of the ejector seat.[br]Martin acquired a general knowledge of engineering as an industrial worker in Belfast. In 1929 he established the Martin Aircraft Company, which was merged five years later with another concern to form the Martin-Baker Aircraft Company at Denham, Buckinghamshire. They became known for designing and constructing efficient, lightweight military aircraft, and Martin supervised personally every aspect of the work of his factory. During the Second World War they developed a number of aircraft weapons, including an explosive device carried on a bomber's wings for cutting the cables of barrage balloons, the flat-feed system for the 20 mm Hispano cannon used on British fighter planes and the twelve-gun pack mounted in the nose of the Havoc night fighter. Martin began devising means of rapid escape from a disabled fighter plane. First came a quick-release canopy for the Spitfire, followed by an improved form sliding on guides set in the fuselage. Then came the Martin-Baker seat, which ejected the pilot from his plane by an explosive charge. Ground tests were made to determine the rates of acceleration that could be tolerated by the pilot, and the first test in the air with a pilot took place in July 1946 at a speed of 320 mph (515 km/h) and an altitude of 8,000 ft (2,400 m). Its first use in a genuine emergency was in May 1949.After the Second World War, the firm specialized in making components, particularly the ejector seat, rather than complete aircraft. The higher speeds and altitudes of supersonic jet aircraft made it necessary to modify the ejector seat: a device to hold the pilot's legs together, to prevent their being broken, was incorporated. In addition, with the Institute of Aviation Medicine, Martin developed a face blind to prevent skin damage at low temperatures. Another modification was to allow the seat to fall freely for the first 10,000 ft (3,000 m) to enable the pilot to reach breathable air more quickly; in October 1959 a successful demonstration took place at 1,250 mph (2,000 km/h) and 40,000 ft (12,000 m) altitude. During the inventor's lifetime, it is estimated that his ejector seat saved the lives of some 4,700 airmen.[br]Principal Honours and DistinctionsKnighted 1965. Barbour Air Safety Award 1958. Cumberbatch Air Safety Trophy 1959. Royal Aero Club Gold Medal 1964.Further ReadingObituary, 1981, The Times.LRD -
14 Ohain, Hans Joachim Pabst von
SUBJECT AREA: Aerospace[br]b. 14 December 1911 Dessau, Germany[br]German engineer who designed the first jet engine to power an aeroplane successfully.[br]Von Ohain studied engineering at the University of Göttingen, where he carried out research on gas-turbine engines, and centrifugal compressors in particular. In 1935 he patented a design for a jet engine (in Britain, Frank Whittle patented his jet-engine design in 1930). Von Ohain was recruited by the Heinkel company in 1936 to develop an engine for a jet aircraft. Ernst Heinkel was impressed by von Ohain's ideas and gave the project a high priority. The first engine was bench tested in September 1937. A more powerful version was developed and tested in air, suspended beneath a Heinkel dive-bomber, during the spring of 1939. A new airframe was designed to house the revolutionary power plant and designated the Heinkel He 178. A short flight was made on 24 August 1939 and the first recognized flight on 27 August. This important achievement received only a lukewarm response from the German authorities. Von Ohain's turbojet engine had a centrifugal compressor and developed a thrust of 380 kg (837 lb). An improved, more powerful, engine was developed and installed in a new twin-engined fighter design, the He 280. This flew on 2 April 1941 but never progressed beyond the prototype stage. By this time two other German companies, BMW and Junkers, were constructing successful turbojets with axial compressors: luckily for the Allies, Hitler was reluctant to pour his hard-pressed resources into this new breed of jet fighters. After the war, von Ohain emigrated to the United States and worked for the Air Force there.[br]Bibliography1929, "The evolution and future of aeropropulsion system", The Jet Age. 40 Years of Jet Aviation, Washington, DC: National Air \& Space Museum, Smithsonian Institution.Further ReadingVon Ohain's work is described in many books covering the history of aviation, and aero engines in particular, for example: R.Schlaifer and S.D.Heron, 1950, Development of Aircraft Engines and fuels, Boston. G.G.Smith, 1955, Gas Turbines and Jet Propulsion.Grover Heiman, 1963, Jet Pioneers.JDSBiographical history of technology > Ohain, Hans Joachim Pabst von
-
15 Rowland, Thomas Fitch
SUBJECT AREA: Mining and extraction technology[br]b. 15 March 1831 New Haven, Connecticut, USAd. 13 December 1907 New York City, USA[br]American engineer and manufacturer, inventor of off-shore drilling.[br]The son of a grist miller, Rowland worked in various jobs until 1859 when he established his own business for the construction of wooden and iron steamships and for structural iron works, in Greenpoint, Long Island, New York. In 1860 he founded the Continental Works and during the American Civil War he started manufacturing gun carriages and mortar beds. He fitted out many vessels for the navy, and as a contractor for John Ericsson he built heavily armoured war vessels.He continued shipbuilding, but later diversified his business. He devoted great attention to the design of gas-works, constructing innovative storage facilities all over the United States, and he was concerned with the improvement of welding iron and steel plates and other processes in the steel industry. In the late 1860s he also began the manufacture of steam-engines and boilers for use in the new but expanding oil industry. In 1869 he took out a patent for a fixed platform for drilling for oil off-shore up to a depth of 15 m (49 ft). With this idea, just ten years after Edwin Drake's success in on-shore oil drilling in Titusville, Pennsylvania, Rowland pioneered the technology of off-shore drilling for petroleum in which the United States later became the leading nation.[br]Principal Honours and DistinctionsAmerican Society of Civil Engineers: Director 1871–3, Vice-President 1886–7, Honorary Member 1899.Further Reading"Thomas Fitch Rowland", Dictionary of American Biography.1909, "Memoir", Transactions of the American Society of Civil Engineers 62:547–9.WK -
16 Smith, Sir Francis Pettit
SUBJECT AREA: Ports and shipping[br]b. 9 February 1808 Copperhurst Farm, near Hythe, Kent, Englandd. 12 February 1874 South Kensington, London, England[br]English inventor of the screw propeller.[br]Smith was the only son of Charles Smith, Postmaster at Hythe, and his wife Sarah (née Pettit). After education at a private school in Ashford, Kent, he took to farming, first on Romney Marsh, then at Hendon, Middlesex. As a boy, he showed much skill in the construction of model boats, especially in devising their means of propulsion. He maintained this interest into adult life and in 1835 he made a model propelled by a screw driven by a spring. This worked so well that he became convinced that the screw propeller offered a better method of propulsion than the paddle wheels that were then in general use. This notion so fired his enthusiasm that he virtually gave up farming to devote himself to perfecting his invention. The following year he produced a better model, which he successfully demonstrated to friends on his farm at Hendon and afterwards to the public at the Adelaide Gallery in London. On 31 May 1836 Smith was granted a patent for the propulsion of vessels by means of a screw.The idea of screw propulsion was not new, however, for it had been mooted as early as the seventeenth century and since then several proposals had been advanced, but without successful practical application. Indeed, simultaneously but quite independently of Smith, the Swedish engineer John Ericsson had invented the ship's propeller and obtained a patent on 13 July 1836, just weeks after Smith. But Smith was completely unaware of this and pursued his own device in the belief that he was the sole inventor.With some financial and technical backing, Smith was able to construct a 10 ton boat driven by a screw and powered by a steam engine of about 6 hp (4.5 kW). After showing it off to the public, Smith tried it out at sea, from Ramsgate round to Dover and Hythe, returning in stormy weather. The screw performed well in both calm and rough water. The engineering world seemed opposed to the new method of propulsion, but the Admiralty gave cautious encouragement in 1839 by ordering that the 237 ton Archimedes be equipped with a screw. It showed itself superior to the Vulcan, one of the fastest paddle-driven ships in the Navy. The ship was put through its paces in several ports, including Bristol, where Isambard Kingdom Brunel was constructing his Great Britain, the first large iron ocean-going vessel. Brunel was so impressed that he adapted his ship for screw propulsion.Meanwhile, in spite of favourable reports, the Admiralty were dragging their feet and ordered further trials, fitting Smith's four-bladed propeller to the Rattler, then under construction and completed in 1844. The trials were a complete success and propelled their lordships of the Admiralty to a decision to equip twenty ships with screw propulsion, under Smith's supervision.At last the superiority of screw propulsion was generally accepted and virtually universally adopted. Yet Smith gained little financial reward for his invention and in 1850 he retired to Guernsey to resume his farming life. In 1860 financial pressures compelled him to accept the position of Curator of Patent Models at the Patent Museum in South Kensington, London, a post he held until his death. Belated recognition by the Government, then headed by Lord Palmerston, came in 1855 with the grant of an annual pension of £200. Two years later Smith received unofficial recognition when he was presented with a national testimonial, consisting of a service of plate and nearly £3,000 in cash subscribed largely by the shipbuilding and engineering community. Finally, in 1871 Smith was honoured with a knighthood.[br]Principal Honours and DistinctionsKnighted 1871.Further ReadingObituary, 1874, Illustrated London News (7 February).1856, On the Invention and Progress of the Screw Propeller, London (provides biographical details).Smith and his invention are referred to in papers in Transactions of the Newcomen Society, 14 (1934): 9; 19 (1939): 145–8, 155–7, 161–4, 237–9.LRDBiographical history of technology > Smith, Sir Francis Pettit
-
17 Tesla, Nikola
SUBJECT AREA: Electricity[br]b. 9 July 1856 Smiljan, Croatiad. 7 January 1943 New York, USA[br]Serbian (naturalized American) engineer and inventor of polyphase electrical power systems.[br]While at the technical institute in Graz, Austria, Tesla's attention was drawn to the desirability of constructing a motor without a commutator. He considered the sparking between the commutator and brushes of the Gramme machine when run as a motor a serious defect. In 1881 he went to Budapest to work on the telegraph system and while there conceived the principle of the rotating magnetic field, upon which all polyphase induction motors are based. In 1882 Tesla moved to Paris and joined the Continental Edison Company. After building a prototype of his motor he emigrated to the United States in 1884, becoming an American citizen in 1889. He left Edison and founded an independent concern, the Tesla Electric Company, to develop his inventions.The importance of Tesla's first patents, granted in 1888 for alternating-current machines, cannot be over-emphasized. They covered a complete polyphase system including an alternator and induction motor. Other patents included the polyphase transformer, synchronous motor and the star connection of three-phase machines. These were to become the basis of the whole of the modern electric power industry. The Westinghouse company purchased the patents and marketed Tesla motors, obtaining in 1893 the contract for the Niagara Falls two-phase alternators driven by 5,000 hp (3,700 kW) water turbines.After a short period with Westinghouse, Tesla resigned to continue his research into high-frequency and high-voltage phenomena using the Tesla coil, an air-cored transformer. He lectured in America and Europe on his high-frequency devices, enjoying a considerable international reputation. The name "tesla" has been given to the SI unit of magnetic-flux density. The induction motor became one of the greatest advances in the industrial application of electricity. A claim for priority of invention of the induction motor was made by protagonists of Galileo Ferraris (1847–1897), whose discovery of rotating magnetic fields produced by alternating currents was made independently of Tesla's. Ferraris demonstrated the phenomenon but neglected its exploitation to produce a practical motor. Tesla himself failed to reap more than a small return on his work and later became more interested in scientific achievement than commercial success, with his patents being infringed on a wide scale.[br]Principal Honours and DistinctionsAmerican Institute of Electrical Engineers Edison Medal 1917. Tesla received doctorates from fourteen universities.Bibliography1 May 1888, American patent no. 381,968 (initial patent for the three-phase induction motor).1956, Nikola Tesla, 1856–1943, Lectures, Patents, Articles, ed. L.I.Anderson, Belgrade (selected works, in English).1977, My Inventions, repub. Zagreb (autobiography).Further ReadingM.Cheney, 1981, Tesla: Man Out of Time, New Jersey (a full biography). C.Mackechnie Jarvis, 1969, in IEE Electronics and Power 15:436–40 (a brief treatment).T.C.Martin, 1894, The Inventions, Researches and Writings of Nikola Tesla, New York (covers his early work on polyphase systems).GW
См. также в других словарях:
Constructing Excellence — is a UK based construction industry membership organisation. In the UK, it is unique insofar as its member organisations are drawn from across the industry supply chain, ranging from clients, through contractors and consultants, to suppliers and… … Wikipedia
6 Field Engineer Squadron — Infobox Military Unit unit name= 6 Field Engineer Squadron caption= dates= 1 February 1911 Present country= Canada allegiance= branch= Canadian Military Engineers Primary Reserve type= Combat Engineers role= size= command structure=Land Force… … Wikipedia
Combat engineer — This article is about the combatant soldier occupation. For the military science concept of shaping the physical war environment, see Military engineering. Combat Engineer by Victory V. Reynolds, Vietnam Combat Artists Program, CAT VIII, 1968.… … Wikipedia
1st New York Volunteer Engineer Regiment — 1st NY Engineers, conducting a sapping approach on Fort Wagner in 1863. Active October 11, 1861 to June 30, 1865 … Wikipedia
20th Engineer Brigade (United States) — Infobox Military Unit unit name=20th Engineer Brigade caption=20th Engineer Brigade Shoulder Sleeve Insignia country=United States type=combat engineer brigade branch=United States Army dates=1950 08 16 1958 12 12 1967 05 01 1971 09 20 1974 06 21 … Wikipedia
Civil engineer — Occupation Names Civil engineer Activity sectors design and management of structures, transportation systems, and infrastructure Description Competencies technical knowledge, management skills, mathematical analysis … Wikipedia
225th Engineer Brigade (United States) — Infobox Military Unit unit name=225th Engineer Brigade caption=225th Engineer Brigade shoulder sleeve insignia dates= country=United States allegiance= branch=Louisiana Army National Guard type=Engineer Brigade role=Combat Support size=Brigade… … Wikipedia
332nd Engineer General Service Regiment (United States) — Infobox Military Unit unit name=332nd Engineer General Service Regiment caption=332nd Engineer General Service Regiment dates=May 6 1942 to January 28 1947 June 1950 to August 1953 country=United States of America branch=Army type=Engineer… … Wikipedia
249th Engineer Battalion (United States) — Infobox Military Unit unit name=249th Engineer Battalion (Prime Power) caption=249th Engineer Battalion coat of arms dates=1943 Present country=United States allegiance= branch=Regular Army Army Reserves type=Engineer Battalion role= size=… … Wikipedia
Chief Mechanical Engineer — and Locomotive Superintendent are titles applied by British, Australian, and New Zealand railway companies to the person ultimately responsible to the board of the company for the building and maintaining of the locomotives and rolling stock. In… … Wikipedia
Irish Army Engineer Corps — Infobox Military Unit unit name=Engineer Corps dates=September 1922 country=Republic of Ireland branch=Army type=Military Engineering role= Camp Construction, Military Bridging size=Engineer Battalion garrison=1st Fd Engineer Coy Cork 2nd Fd… … Wikipedia